Fakultät für Mathematik und Informatik Lehrgebiet Rechnerarchitektur

Kurs 1608 "Computersysteme I"

Lösungsvorschläge zu den Aufgaben der Hauptklausur im SS 2006

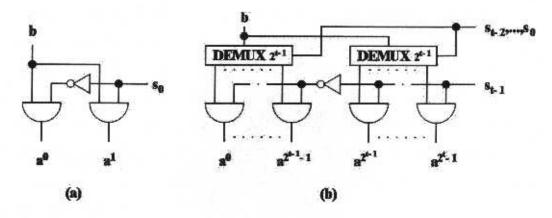
(am 12. August 2006)

Aufgabe 1

Schaltnetze

(25 Punkte)

Bestimmen Sie Kosten und Tiefe eines 2^t-Wege 1-Bit Demultiplexers gemäß der Konstruktion aus der folgenden Abbildung. Stellen Sie dazu die Differenzengleichungen auf und lösen Sie diese mit Lemma 1.28 nach Anpassung des Rekursionsendes, oder direkt.



Hinweis:

Lemma 1.28 lautet:

Sei $f: \mathbb{N} \to \mathbb{N}$ eine Funktion mit f(1) = c und f(n) = a * f(n/b) + g(n) für alle Potenzen $n = b^k$ von b. Dann gilt

$$f(n) = a^{\log_b n} * c + \sum_{i=0}^{\log_b n-1} a^i * g(n/b^i)$$

für alle Potenzen n von b.

Für die Kosten eines 2-Wege 1-Bit Demultiplexers gilt nach Abbildung (a)

$$O(DEMUX_2) = 3$$

Für die Kosten eines 2^t-Wege 1-Bit Demultiplexers gilt nach Abbildung (b)

$$C(DEMUX_{2^t}) = 2 * C(DEMUX_{2^{t+1}}) + 2^t + 1$$
,

da er aus zwei 2^{t-1}-Wege Demultiplexern, einem UND-Gatter an jedem der 2^t Ausgänge, und einem Inverter besteht. Löst man direkt, so erhält man

C (DEMUX₂t)

$$= 4 * C(DEMUX_{2^{0}} \cdot 2) + 2 * (2^{0.1} + 1) + 2^{0.1} + 1$$

$$= 2^{t-1} * C(DEMUX_2t) + 2^{t-2} * (2^2 + 1) + ... + 2 * (2^{t-1} + 1) + 2^t + 1$$

$$= 3 * 2^{t-1} + (t-1) * 2^t + \sum_{i=0}^{t-2} 2^i$$

$$= (t+1) * 2^t - 1.$$

In Lemma 1 28 setzt man n=2, a=2, b=2, c=3, und $g(n)=g(2^i)=2^i+1=n+1$. Da das Rekursionsende hier nicht f(1), sondern f(2)=c ist, verändert sich die Lösungsformel zu

$$f(n) = a^{\log_k n + t^{-k}} c + \sum_{i=0}^{\log_k n + 2} a^{i+k} g(n / b^i).$$

Einsetzen in diese Formel und Lösen der Summe ergibt ebenfalls Kosten (t + 1) * 2' - 1

Die Tiefe eines 2-Wege 1-Bit Demultiplexers beträgt

$$T(DEMUX_2) = 2$$

Die Tiefe eines 2 Wege 1-Bit Demultiplexers beträgt

$$T(DEMUX_{2l}) = T(DEMUX_{2l-1}) + 1$$

Sie ergibt sich aus der Tiefe des 2º '-Wege Multiplexers und den UND-Gatter, da die Tiefe eines Demultiplexers stets mindestens 7 beträgt, und somit nie kleiner als die eines Inverters ist. Die direkte Lösung ergibt

$$T(DEMUX_{2t}) = T(DEMUX_{2t}) + t - t = t + 1$$

In der veränderten Lösungsformel von Lemma 1.28 setzt man $n = 2^t$, a = 1, b = 2, c = f(2) = 2 und g(n) = 1. Man erhält

$$T(DEMUX_{2}t) = 1^{t-1} \cdot 2 + \sum_{i=0}^{t-2} 1^{i-1} \cdot 1 = 2 + t - 1 = t + 1.$$

Damit gilt:

$$C(DEML(X_{2l}) = (t+1) * 2^{l} - 1$$

 $T(DEML(X_{2l}) = t+1$

(25)

Aufgabe 2

Zahlendarstellungen

(5 Punkte)

Bilden Sie die 8-stellige Zweierkomplement-Darstellung für die Zahl z=-64. Welche Zahl wird durch die Zweierkomplement-Darstellung 00110000 dargestellt?

Es gilt n=7. Wegen z<0 ist $a_2=1$. Es gilt $z+2^0=64$. Wegen $bin_7(64) = 10000000$ ist die Lösung 110000000.

Da das oberste Bit den Wert θ hat, ist die dargestellte Zahl nicht negativ. Die Bits a_4 und a_5 haben den Wert θ , alle anderen den Wert θ . Damit ist die dargestellte Zahl $z=2^4+2^5=48$.

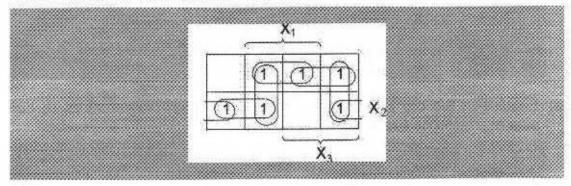
(5)

(5)

(2)

(2)

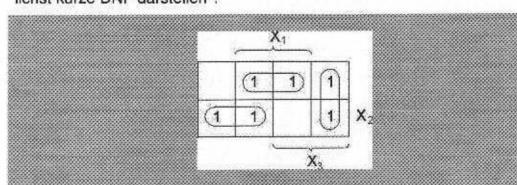
 a) Geben Sie im Karnaugh-Diagramm eine Boolesche Funktion F von 3 Variablen an, die 6 Primimplikanten besitzt!



b) Wie viele derartige Funktionen gibt es? - Begründen Sie Ihre Antwort!

Es gibt 4 derartige Funktionen, weil es genau 4 Paare von Eck-Kästchen und (per Rösselsprung erreichbaren) inneren Kästchen gibt bzw. umgekehrt.

c) Mit wie vielen Primimplikanten kann man eine derartige Funktion als möglichst kurze DNF darstellen ?



Wie man an den gezeigten Konturen sieht, kann man eine solche Funktion als DNF von 3 Konjunktionstermen darstellen.

d) Welcher besondere Typ von DNF entsteht bei c) ?

Es handelt sich hierbei um eine DDFN, d.h. eine DNF aus paarweise disjunkten Termen.

 e) Bestätigen Sie die Ergebnisse aus dem Karnaugh-Diagramm zu d) durch eine algebraische Proberechnung!

Für das in Teilaufgabe 1a) abgebildete Kamaugh-Diagramm gilt beispielsweise

$$F = X_1 \overline{X_2} \vee X_2 \overline{X_3} \vee X_3 \overline{X_1}$$

wobei alle Terme disjunkt sind, denn es gilt

$$X_1X_2\overline{X_2}X_3 = X_1X_2X_3\overline{X_1} = X_2X_3\overline{X_2}X_1 = 0$$

wegen $X_i \overline{X}_i = 0$

f) Weshalb ist eine KNF-Darstellung in diesem Fall günstiger ?

Eine mögliche KNF für das in Aufgabe 1a) gegebene Karnaugh-Diagramm. lautet

$$F = (X_1 \vee X_2 \vee X_3) \wedge (\overline{X}_1 \vee \overline{X}_2 \vee \overline{X}_3)$$

Offensichtlich werden bei der Verwendung der KNF weniger Gatter als bei einer Realisierung mittels DNF benötigt.

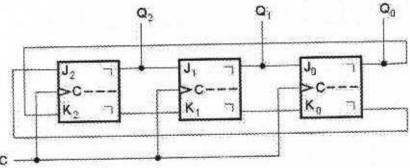
(3)

Aufgabe 4

Johnsonzähler

(15 Punkte)

Analysieren Sie den sogenannten Johnsonzähler aus nachfolgend gezeigter Abbildung.

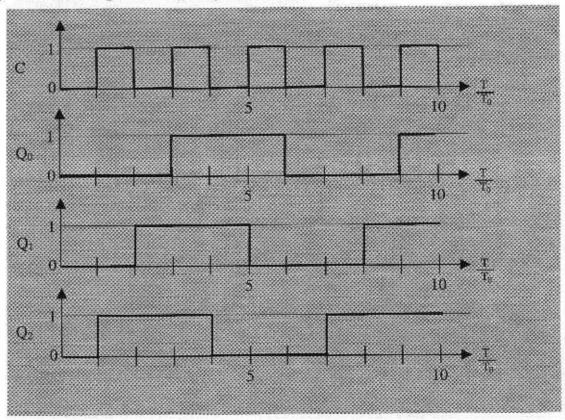


a) Bestimmen Sie ausgehend vom Startzustand (000) den Zählzyklus. Geben Sie eine Folgezustandstabelle an!

\mathfrak{I}_0	O ₀	Q,	Jo	K ₀	Jı	K,	J ₂	K ₂	Q ₀	Q ₁	O.
0	0	0	.0	1	0	1	1	0	0	0	1
0	0	1	0	1	1	0	1	0	0	1	1
0	1	1	1	0	1	0	1	0	1	1	1
1	1	1	1	0	1	0	0	1	1	1	0
1	1	0	1	0	0	1	0	1	1	0	0
1	0	0	0	- 1	0	1	0	1	0	0	0

(9)

b) Vervollständigen Sie das folgende Impulsdiagramm!



Aufgabe 5 Schaltwerkssynthese (20 Punkte)

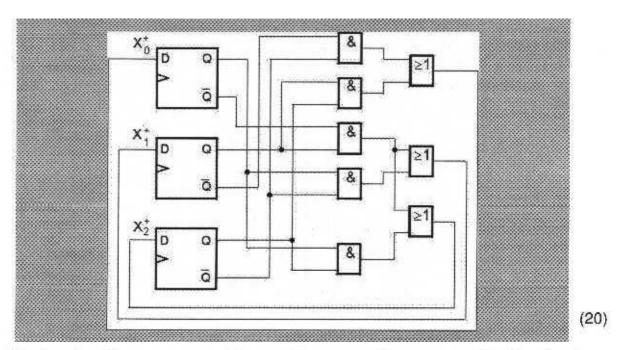
(6)

Ein spezieller Zählcode ist der Gray-Code. Er ordnet die Zahlen so, daß bei jedem Zählschritt nur eine Stelle der Dualzahl verändert wird. Die folgende Tabelle zeigt einen Gray-Code für 3-stellige Dualzahlen. Nach der 100 folgt wieder die 000.

X ₂	X ₁	X ₀
X ₂ 0 0 0 0	0	X ₀
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

Konstruieren Sie ein Schaltwerk für diesen Gray-Code, das nur aus 3 D-Flipflops sowie aus UND-Gattern, ODER-Gattern und Invertern besteht.

$$\begin{split} X_0^+ &= \overline{X_0 X_1 X_2} \vee X_0 \overline{X_1} \overline{X_2} \vee \overline{X_0} X_1 X_2 \vee X_0 X_1 X_2 = \overline{X_1 X_2} \vee X_1 X_2 \\ \\ X_1^+ &= X_0 \overline{X_1} \overline{X_2} \vee X_0 X_1 \overline{X_2} \vee \overline{X_0} X_1 \overline{X_2} \vee \overline{X_0} X_1 X_2 = X_0 \overline{X_2} \vee \overline{X_0} X_1 \\ \\ X_2^+ &= \overline{X_0} X_1 \overline{X_2} \vee \overline{X_0} X_1 X_2 \vee X_0 \overline{X_1} X_2 \vee X_0 X_1 X_2 = \overline{X_0} X_1 \vee X_0 X_2 \end{split}$$



Aufgabe 6

Takt

Operationswerk

(10 Punkte)

Skizzieren Sie ein Operationswerk mit zwei Registern R₁ und R₂, die aus Master-Slave-D-Flipflops aufgebaut sind. Durch eine Steuervariable S soll es möglich sein, im darauffolgenden Taktzyklus eine der beiden folgenden Mikrooperationen auszuführen.

- S=0: Tausche die Registerinhalte von R₁ und R₂.
- S=1: Addiere die Registerinhalte von R₁ und R₂ und schreibe die Summe in das Register R₁. Das Register R₂ soll dabei unverändert bleiben.

Der Aufbau des Operationswerks ist unten dargestellt. Da das Register R₂ bei S=1 nicht verändert werden dart, muss der Takt durch ein UND-Schaltglied maskiert werden. Der Takt wird nur für S=0 weltergeleitet. In die sem Fall übernimmt das Register R₂ den Inhalt von Register R₁. Gleichzeitig wird über den Multiplexer vor R₁ das Register R₂ zum Einspeichern in R₁ ausgewählt. Für S=1 wird die Summe von R₁ und R₂ ausgewählt und von R₁ übernommen.

(10)

Ergänzen Sie den folgenden Lückentext: