Elementare Zahlentheorie mit Maple (01202)

SoSe 2012

Klausur am 08.09.2012:

Musterlösungen

Aufgabe 1

Mit der Division von a durch b mit Rest erhalten wir zwei Zahlen $q', r' \in \mathbb{Z}$, so dass a = q'b + r' und $0 \le r' < b$ gilt. Setzen wir q = q' - 2 und r = r' + 2b, dann gilt $2b \le r' + 2b = r < b + 2b = 3b$. Weiter gilt

$$a = q'b + r' = (q+2)b + (r-2b) = qb + r.$$

Aufgabe 2

Sei $p \ge 5$ eine Primzahl. Wir teilen p durch 3 mit Rest und erhalten p = 3k + r mit $k \in \mathbb{N}$ (denn $p \ge 5$) und r = 1 oder r = 2. Der Fall r = 0 kann nicht auftreten, denn $p \ge 5$ und daher nicht durch 3 teilbar. Im Fall p = 3k + 1 gilt $p^2 + 2 = 9k^2 + 6k + 3 = 3(3k^2 + 2k + 1)$. Da $k \ge 1$ ist, ist $3k^2 + 2k + 1 > 1$. Es folgt, dass $p^2 + 2$ keine Primzahl ist. Im Fall p = 3k + 2 gilt $p^2 + 2 = 9k^2 + 12k + 6 = 3(3k^2 + 4k + 6)$, und dies zeigt, dass $p^2 + 2$ keine Primzahl ist. Somit ist $p^2 + 2$ für $p \ge 5$ eine zusammengesetzte Zahl.

Aufgabe 3

Wir zeigen zunächst, dass für alle $a \in \mathbb{Z}$ entweder $a^2 \equiv 0 \pmod{4}$ oder $a^2 \equiv 1 \pmod{4}$ gilt. Wir betrachten die möglichen Reste von a modulo 4 und deren Quadrate:

$a \mod 4$	$a^2 \mod 4$
0	0
1	1
2	$4 \equiv 0 \pmod{4}$
3	$9 \equiv 1 \pmod{4}$

Seien nun x=2m+1 und y=2n+1 ungerade mit $m,n\in\mathbb{Z}$. Dann gilt $x^2=4m^2+4m+1$ und $y^2=4n^2+4n+1$. Weiter gilt $x^2+y^2=4m^2+4n^2+4m+4n+2$. Mit der Division von x^2+y^2 durch 4 mit Rest erhalten wir (x^2+y^2) mod 4=2. Da aber alle Quadratzahlen modulo 4 nur den Rest 0 oder 1 haben können, ist x^2+y^2 keine Quadratzahl.

Aufgabe 4

Wir betrachten zunächst den Spezialfall n=1. Wir zeigen, dass für jede multiplikative Funktion $h: \mathbb{N} \to \mathbb{N}$ gilt: h(1)=1. Wegen ggT(1,1)=1 folgt $h(1)=h(1\cdot 1)=h(1)h(1)$. Da $0 \neq h(1) \in \mathbb{N}$ können wir auf beiden Seiten der Gleichung kürzen und erhalten h(1)=1. Damit gilt f(1)=1=g(1).

Sei nun $n \in \mathbb{N}, n > 1$ und sei $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ die kanonische Primfaktorzerlegung von n.

Elementare Zahlentheorie mit Maple (01202)

SoSe 2012

Klausur am 08.09.2012:

Musterlösungen

Dann folgt

$$\begin{split} f(n) &= f(p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}) & \text{(Primfaktorzerlegung von } n) \\ &= f(p_1^{e_1}) f(p_2^{e_2}) \cdots f(p_r^{e_r}) & \text{(Multiplikativität von } f) \\ &= g(p_1^{e_1}) g(p_2^{e_2}) \cdots g(p_r^{e_r}) & \text{(Voraussetzung } f(p^k) = g(p^k)) \\ &= g(p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}) & \text{(Multiplikativität von } g) \\ &= g(n) & \text{(Primfaktorzerlegung von } n). \end{split}$$

Es gilt also f(n) = q(n) für alle $n \in \mathbb{N}$.

Aufgabe 5

Sei d = kp für ein $k \in \mathbb{N}$. Wir nehmen an, dass die Gleichung $X^2 - dY^2 = -1$ eine Lösung (x_0, y_0) besitzt. Daraus folgt dann

$$x_0^2 + 1 = dy_0^2 = kpy_0^2 \equiv 0 \pmod{p}.$$

Da p>2 und $p\equiv 3\ (\mathrm{mod}\ 4)$ gilt, folgt aber mit Satz 6.2.3, dass die Kongruenz $X^2\equiv -1\ (\mathrm{mod}\ p)$ keine Lösung hat. Also war unsere Annahme falsch. Somit folgt in diesem Fall, dass die Gleichung $X^2-dY^2=-1$ keine Lösung hat.

Aufgabe 6

Sei $n = a^2 - b^2$. Dann gilt n = (a + b)(a - b). Wir betrachten die folgenden vier Fälle:

- 1. a und b sind gerade: Dann ist a + b gerade und auch a - b ist gerade.
- 2. a und b sind ungerade: Dann sind wieder a + b und auch a - b gerade.
- 3. a ist gerade, b ist ungerade: Die Summe a + b ist dann ungerade, genauso wie die Differenz a - b.
- 4. a ist ungerade, b ist gerade: Dieser Fall wird analog behandelt.

Insgesamt ergibt sich, dass $n = a^2 - b^2 = (a + b)(a - b)$ das Produkt aus zwei ganzen Zahlen ist, die entweder beide gerade oder beide ungerade sind.

Aufgabe 7

Eine mögliche Prozedur könnte folgendermaßen aussehen:

```
> divrest:=proc(z::complex,w::complex) # berechnet die Gauss'schen
Zahlen q und r bei Division mit Rest von z durch w
   local b, e, f, u, v, g, h, q, r;
   b:=z/w;
   e:=Re(b);
   f:=Im(b);
   u:=floor(e);
   v := u+1;
   if abs(u-e) \le 1/2 then
      g:=u;
   else
      g:=v;
   fi;
   u:=floor(f);
   v := u+1;
   if abs(u-e) \le 1/2 then
      h:=u;
   else
      h:=v;
   fi;
   q:= g+h*I;
   r := z - q * w;
   print(q);
   print(r);
   end:
```

Eine kürzere Alternative existiert, wenn Sie die Maple-Prozedur round() kennen:

```
> divrest:=proc(z::complex,w::complex) # berechnet die Gauss'schen
Zahlen q und r bei Division mit Rest von z durch w
  local b, e, f, g, h, q, r;
  b:=(z/w);
  e:=Re(b);
  f:=Im(b);
  g:=round(e);
  h:=round(f);
  q:= g+h*I;
  r:= z-q*w;
  print(q);
  print(r);
  end:
```