a)
$$F(y) = \int_{1}^{2} f(x, y) dx$$

$$= \int_{1}^{2} \frac{x - 1}{xy} dx$$

$$= \int_{1}^{2} \frac{1}{y} - \frac{1}{y} \frac{1}{x} dx$$

$$= \left[\frac{1}{y} x - \frac{1}{y} \log x \right]_{1}^{2}$$

$$= \frac{2}{y} - \frac{1}{y} \log 2 - \frac{1}{y} + \frac{1}{y} \log 1$$

$$= \frac{1}{y} - \frac{1}{y} \log 2.$$

b)
$$\int_{1}^{2} F(y) dy = \int_{1}^{2} \frac{1}{y} - \frac{1}{y} \log 2 \, dy$$
$$= [\log y - \log 2 \log y]_{1}^{2}$$
$$= \log 2 - \log 2 \log 2 - \log 1 + \log 2 \log 1$$
$$= \log 2(1 - \log 2).$$

c) Berechnen Sie

$$\int_{[1,2]\times[1,2]} f(x,y) d\lambda_2(x,y)$$

$$= \int_{[1,2]} \left(\int_{[1,2]} f(x,y) d\lambda_1(x) \right) d\lambda_1(y)$$

$$= \int_1^2 \left(\int_1^2 f(x,y) dx \right) dy \quad \text{(mit Fubini)}$$

$$= \log 2(1 - \log 2) \quad \text{mit b)}$$

$$\begin{split} \int_{[1,2]} \left(\int_{[1,2]} f(x,y) \, d\lambda_1(y) \right) \, d\lambda_1(x) \\ &= \int_{[1,2]\times[1,2]} f(x,y) \, d\lambda_2(x,y) \quad \text{(mit Fubini)} \\ &= \log 2 (1 - \log 2) \quad \text{mit c)}. \end{split}$$

(a ist der Beweis zu Korollar 3.6.7 aus dem Skript.)

a) $A \setminus B$ und B sind disjunkt. Also folgt

$$\mu(A) = \mu((A \setminus B) \cup B)$$

$$= \mu(A \setminus B) + \mu(B), \quad (\text{Additivität von } \mu)$$

$$\Rightarrow \quad \mu(A \setminus B) = \mu(A) - \mu(B).$$

- b) $\mu(B) = \infty$ impliziert $\mu(A) = \infty$, also $\mu(A \setminus B) = \infty \infty$, aber $\mu(A) = \infty$ ist nicht definiert.
- c) Sei $\mathcal{R} = \mathcal{P}(\mathbb{R})$ und

$$\mu(A) = \begin{cases} \infty & \text{falls } 0 \in A \text{ und} \\ 0 & \text{falls } 0 \notin A \text{ ist.} \end{cases}$$

Für $A=\{0,1\}$ und $B=\{0\}$ gilt $B\subset A.$ Somit gilt

$$\mu(A \setminus B) = \mu(\{1\}) = 0.$$

Aber

$$\mu(A) - \mu(B) = \mu\big(\{0,1\}\big) - \mu\big(\{0\}\big) = \infty - \infty$$

ist nicht definiert.

1. f_n ist offensichtlich eine beschränkte Funktion, die bis auf den Punkt x=1 stetig ist. Somit ist f_n Lebesgue-messbar. Da f_n durch die Lebesgue-integrierbaren Funktionen 0 und $\chi_{[0,1]}$ beschränkt ist, ist f_n selbst Lebesgue-integrierbar.

Wir zeigen nun, dass f_n eine isotone Funktionenfolge ist:

- Fall x < 0: Nach Definition gilt $f_n(x) = 0$ für alle n. Also gilt insbesondere $f_n(x) \le f_m(x)$ für alle $n \le m$.
- Fall x > 1: auch in diesem Fall hängt $f_n(x) = 0$ nicht von n ab. Es gilt also auch $f_n(x) \le f_m(x)$ für alle $n \le m$.
- Fall $x \in [0,1]$: Sei $n \le m$. Dann gilt $f_n(x) = x^{\frac{1}{n}} \le x^{\frac{1}{m}} = f_m(x)$.

Somit ist f_n eine isotone Funktionenfolge.

Da $\chi_{[-1,1]}$ eine integrierbare Funktion unabhängig von n ist, ist somit auch die Funktion $x \mapsto \chi_{[-1,1]}(x) f_n(x)$ isoton und integrierbar.

Der Satz von B. Levi ist anwendbar. Wir erhalten

$$f(x) := \lim_{n \to \infty} \chi_{[-1,1]}(x) \cdot f_n(x) = \begin{cases} 1 & \text{für } x \in (0,1], \\ 0 & \text{sonst} \end{cases}$$

als integrierbare Grenzfunktion. Desweitern gilt

$$\lim_{n \to \infty} \int_{[-1,1]} f_n(x) \, d\lambda_1(x) = \lim_{n \to \infty} \int \chi_{[-1,1]}(x) \cdot f_n(x) \, d\lambda_1(x)$$

$$= \int \lim_{n \to \infty} \chi_{[-1,1]}(x) \cdot f_n(x) \, d\lambda_1(x)$$

$$= \int_{[-1,0]} 0 \, d\lambda_1(x) + \int_{(0,1]} 1 \, d\lambda_1(x)$$

$$= 0 \cdot \lambda_1([-1,0]) + 1 \cdot \lambda_1((0,1])$$

$$= 0 + 1 = 1.$$

2. Laut Vorlesung (Kapitel 6) gilt

$$\lambda_2(M_n) = \int_{[-1,1]} f_n(x) d\lambda_1(x).$$

3. Da f_n isoton ist, folgt

$$M_n = \{(x, y) \mid x \in [-1, 1], 0 \le y \le f_n(x)\}$$

$$\subset \{(x, y) \mid x \in [-1, 1], 0 \le y \le f_m(x)\}$$

$$= M_m.$$

für alle $n \leq m$. Insbesondere gilt auch

$$\bigcup_{n=1}^{m} M_n = M_m.$$

Laut Konstruktion als "Fläche unter dem Funktionsgrafen" ist M_n eine Borelmenge in $\mathcal{B}(\mathbb{R})$. Da $\mathcal{B}(\mathbb{R})$ eine σ -Algebra ist, ist auch $\bigcup_{n\in\mathbb{N}}M_n$ eine Borelmenge. Somit formen die M_n eine Mengenfolge, die isoton gegen $\bigcup_{n\in\mathbb{N}}M_n$ strebt.

Also gilt

gilt
$$\lambda_2 \left(\bigcup_{n \in \mathbb{N}} M_n \right) = \lim_{m \to \infty} \lambda_2 \left(\bigcup_{n=1}^m M_n \right)$$

$$= \lim_{m \to \infty} \lambda_2 (M_m)$$

$$= \lim_{m \to \infty} \int_{[-1,1]} f_m(x) \, d\lambda_1(x)$$

$$= 1 \qquad \text{(ist oben bereits ausgerechnet)}.$$

Wir erhalten die Antwort

$$\lambda_2\left(\bigcup_{n\in\mathbb{N}}M_n\right)=1.$$

- a) Das Mengensystem $\mathcal{A} = \mathcal{P}(\{1,2\})$ ist als Potenzmenge von $\Omega = \{1,2\}$ automatisch eine σ -Algebra über Ω .
- b) μ erfüllt die 3 Eigenschaften eines Inhalts:
 - 1) $\mu(\emptyset) = 0$ nach Definition.
 - 2) $\mu(A) \geq 0$ für alle $A \in \mathcal{A}$.
 - 3) Wir checken einfach alle Möglichkeiten der Additivität:

$$\begin{split} * \ \mu\big(\emptyset \cup \{1\}\big) &= \mu\big(\{1\}\big) = \tfrac{1}{2} = 0 + \tfrac{1}{2} = \mu(\emptyset) + \mu\big(\{1\}\big), \\ * \ \mu\big(\emptyset \cup \{2\}\big) &= \mu\big(\{2\}\big) = \tfrac{1}{2} = 0 + \tfrac{1}{2} = \mu(\emptyset) + \mu\big(\{2\}\big), \\ * \ \mu\big(\emptyset \cup \{1,2\}\big) &= \mu\big(\{1,2\}\big) = 1 = 0 + 1 = \mu(\emptyset) + \mu\big(\{1,2\}\big), \\ * \ \mu\big(\emptyset \cup \{1\} \cup \{2\}\big) &= \mu\big(\{1,2\}\big) = 1 = 0 + \tfrac{1}{2} + \tfrac{1}{2} = \mu(\emptyset) + \mu\big(\{1\}\big) + \mu\big(\{2\}\big) \\ \text{und} \\ * \ \mu\big(\{1\} \cup \{2\}\big) &= \mu\big(\{1,2\}\big) = 1 = \tfrac{1}{2} + \tfrac{1}{2} = \mu\big(\{1\}\big) + \mu\big(\{2\}\big). \end{split}$$

- c) Da \mathcal{A} nur endlich viele Elemente hat, ist die σ -Additivität von μ automatisch erfüllt. Also ist μ automatisch bereits ein Maß.
- d) μ ist eine Wahrscheinlichkeitsmaß, da μ nach (c) bereits ein Maß ist und $\mu(\{1,2\})$ = 1 gilt.